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We consider a two-level system coupled to an environment that
volves non-adiabatically. We present a non-perturbative method for
etermining the persistence amplitude whose phase contains all the
orrections to Berry’s phase produced by the non-adiabatic motion of
he environment. Specifically, it includes the effect of transitions
etween the two energy levels to all orders in the non-adiabatic
oupling. The problem of determining all non-adiabatic corrections is
educed to solving an ordinary differential equation to which numer-
cal methods should provide solutions in a variety of situations. We
pply our method to a particular example that can be realized as a
agnetic resonance experiment, thus raising the possibility of testing

ur results in the laboratory. © 1999 Academic Press

I. INTRODUCTION

In the original Berry phase scenario (1), the focus of attentio
s a quantum system with a discrete, non-degenerate energy
rum. Its HamiltonianH[R] is assumed to depend on a se
lassical parametersR which represents an environmental deg
f freedom to which the quantum system is coupled. The
onment is assumed to evolve adiabatically. This produce
diabatic time dependence in the quantum Hamiltonian,H 5
[R(t)]. The time dependence of the quantum stateuc(t)& is
etermined by solving Schro¨dinger’s equation using the quantu
diabatic theorem. Toward this end, one introduces the e
igenstates of the instantaneous HamiltonianH[R(t)],

H@R~t!#uE@R~t!#& 5 E@R~t!#uE@R~t!#&,

nd the quantum system is assumed to be initially prepar
n eigenstateuE[R(0)]& of the initial HamiltonianH[R(0)].
he quantum adiabatic theorem states that, at timet, the
uantum system will be found in the stateuE[R(t)] & to within
phase factor,

uc~t!& 5 expF igE~t! 2
i

\ E
0

t

dtE@R~t!#G uE@R~t!#&. [1]

he second term in the phase of the exponential is know
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he dynamical phase and was already familiar from prev
tudies of the quantum adiabatic theorem. The first term
esents Berry’s discovery, and is referred to as Berry’s ph

gE~t! 5 i E
0

t

dtKE@R~t!#U 

t
UE@R~t!#L . [2]

n the cases where Berry’s phase is physically relevant,gE is
on-integrable: it cannot be written as a single-valued func
f R over all of parameter space. Simon (2) showed that th
uantum adiabatic theorem has a line bundle structure inh

n it, and that Schro¨dinger’s equation defines a parallel tra
ort of the quantum state around the line bundle. Berry’s p

s the signature that the associated connection has non-v
ng curvature. In this paper we will consider Berry’s origi
cenario for a two-level system (2LS), though we will rem
he adiabatic restriction on the environment. Our goal i
btain the corrections to Berry’s phase produced by
diabatic effects.
The organization of this paper is as follows. In Section II,

ntroduce a non-perturbative method for determining all n
diabatic corrections to Berry’s phase. From the derivatio
ill be clear that the effect of transitions between the
nergy levels has been included to all orders in the
diabatic coupling. The problem of determining these co

ions is reduced to solving an ordinary differential equation
hich numerical methods should provide solutions in a va
f situations. In Section III we work out a particular exam

n great detail. In Section IIIA we apply our method to t
xample and determine exactly the non-adiabatic correctio
erry’s phase. As a test of our method, in Section IIIB
olve the Schro¨dinger equation exactly, using a rotating fra
ransformation, and use this solution to independently ob
he non-adiabatic corrections to Berry’s phase. Compa
ith the result obtained in Section IIIA shows that both m
ds yield the same result. In Section IIIC we examine
orrections to Berry’s phase obtained from our analysis in
imit of weak non-adiabaticity. We carry out this analysis b
umerically and analytically. In Section IIID, we discus
agnetic resonance experiment that provides a realizati
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153BERRY’S PHASE IN A NON–ADIABATIC ENVIRONMENT
his particular example, and show how the non-adiabatic
ections to Berry’s phase can be observed in measureme
he transverse magnetization. Finally, we make closing
arks in Section IV.

II. GENERAL ANALYSIS

As mentioned in the Introduction, we consider a 2LS c
led to an environmental degree of freedomR(t) 5 R(t) (sin
cos f, sin u sin f, cos u) with non-adiabatic time depe

ence, and for whichR(t) Þ 0 for all t. The coupling is
escribed by the Hamiltonian,

H~t! 5 R~t! z s. [3]

e denote the instantaneous eigenstates ofH(t) by uE6(t)&
ith corresponding eigenvaluesE6(t) 5 6R(t). Because
(t) Þ 0, the energy spectrum is non-degenerate throug

he 2LS’s dynamical evolution.
BecauseH(t) has non-adiabatic time dependence, tra

ions are possible between the two energy levels. Co
uently, if we initially prepare the 2LS in the negative ene

evel uE2(0)&, there is a finite probability amplitudeT2(t) to
nd the 2LS in the positive energy leveluE1(t)& at time t.
2(t) is the transition amplitude, and the subscript indic

hat the transition began in the negative energy level. Simil
he probability amplitude that the system is found again in
egative energy level at timet defines the persistence amp

udeP2(t). The subscript again indicates that the system
nitially in the negative energy level. The amplitudesP1(t) and

1(t) have analogous definitions.
The 2LS dynamics is determined by the propagatorU(t,

) 5 exp[2(i /\) * 0
t dtH(t)]:

U~t, 0!uE6~0!& 5 P6~t!uE6~t!& 1 T6~t!uE7~t!&. [4]

e will determineP2(t) andT2(t) below, though our princ
le interest is inP2(t). The following derivation is easil
dapted to determineP1(t) and T1(t), though we will no
rovide that derivation here. It proves convenient to writeU(t,
) as a 23 2 matrix:

U~t, 0! 5 O
Ei~t!,Ej~0!

Uij~t!uEi~t!&^Ej~0!u 5 SP1~t! T2~t!
T1~t! P2~t!D .

[5]

To begin, we divide the time interval (0,t) into n shorter
ime intervals of duratione 5 t/n by introducing intermediat
imes t k 5 ke (k 5 0, . . . , n). Later we will letn 3 `. We
enote the propagator for the time intervalt k 3 t k11 by
(k) [ U(t k11, t k) so that

U~t, 0! 5 U~n 2 1! · · ·U~0!. [6]
 W
r-
of

e-

-

ut

i-
e-
y

s
y,
e

s

(k) has the same structure as Eq. [5]:

U~k! 5 SDP1~k! DT2~k!
DT1~k! DP2~k!D . [7]

s the notation implies,DP6(k) [ DP6(t k11, t k) and
T6(k) [ DT6(t k11, t k) are, respectively, the persistence

ransition amplitudes corresponding to the time intervalt k 3
k11. Noting that

U~k! < 1 2
ie

\
H~k! 1 2~e 2!, [8]

^E6~k!u < ^E6~k 2 1!u 1 e


t
^E6~k 2 1!u 1 2~e 2!, [9]

nd using Eqs. [5], [8], and [9], one finds that

DP6~k! 5 1 1 ieġ6~k! 2
ie

\
E6~k!;

DT6~k! 5 2eG6~k!. [10]

ere a dot over a symbol indicates time differentiation, a

i ġ6~k! 5 2^E6~k!uĖ6~k!&;

G6~k! 5 ^E7~k!uĖ6~k!&, [11]

ith

G1~k! 5 2G*2~k!.

6(k) are the Berry phases for the6 energy levels, an
ormalizability of the instantaneous energy eigenstates in

hat the Berry phases are real.G6(k) are known as the no
diabatic couplings for the6 energy levels, and generally a
omplex-valued.
Inserting Eq. [7] repeatedly into Eq. [6], and carrying out

ecessary matrix multiplications, one can show using indu
hat

P2~t! 5 P
k50

n21

DP2~k! 1 @ P
k5n111

n21

DP2~k!#@DT1~n1!#

3 @ P
k5n211

n121

DP1~k!#@DT2~n2!#

3 @ P
k50

n221

DP2~k!# 1 · · · . [12]

e can make this equation more intelligible by introducing
 the
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154 FRANK GAITAN
mplitudes36(i , j ) to persistwithout any transitions in
iven energy level over the time intervalt j 3 t i :

36~i , j ! 5 P
k5j

i21

DP6~k!.

ote thatDP6(i 2 1) is the persistence amplitude correspo
ng to the time intervalt i21 3 t i . This is why the upper lim
n the product must bei 2 1, and noti . Equation [12] can the
e rewritten as

P2~t! 5 32~n, 0! 1 32~n, n1 1 1!DT1~n1!

3 31~n1, n2 1 1!DT2~n2!32~n2, 0! 1 · · · .

[13]

ach term in Eq. [13] gives the amplitude for the state of
LS to follow a particular time sequence that begins and

n the negative energy level. For any given time sequence,
ubinterval will have an amplitude associated with it
ndicates whether a transition occurred during it (DT(k)), or
ot (DP(k)). Thus the first term gives the amplitude for
ystem to undergo zero transitions; the second term give
mplitude for two transitions to occur (in subintervalsn1 and
2). The remaining terms correspond to 4-transitions, 6-
itions, etc. Only an even number of transitions is pos
ince the time development begins and ends in the neg
nergy level. Thus each transition out of this level must e

ually be followed by a transition back into it. One can se
diagrammatic calculus to produce all the terms in Eq.

omplete with rules for assigning a probability amplitude
ach diagram, though we will not take the time to work that
ere.
Similarly, one can show that

T2~t! 5 31~n, n1 1 1!DT2~n1!32~n1, 0!

1 31~n, n1 1 1!DT2~n1!32~n1, n2 1 1!

3 DT1~n2!31~n2, n3 1 1!

3 DT2~n3!32~n3, 0! 1 · · · . [14]

ere only an odd number of transitions can occur since the
ust finish in the positive energy level after having starte

he negative energy level. Further simplification is possib
e introduce

E~n1, n2! 5 DT1~n1!31~n1, n2 1 1!

3 3 2
21~n1, n2 1 1!DT2~n2!,

nd insert 15 32(k)32
21(k) appropriately into Eqs. [13] an

14]. One finds that
-

e
ds
ch
t

he

-
le
ive
n-
p
],

t

S
n
if

P2~t! 5 32~n, 0!@1 1 E~n1, n2!

1 E~n1, n2! E~n3, n4! 1 · · · #,

nd

T2~t! 5 32~n, 0!$31~n, n1 1 1!DT2~n1!3 2
21~n, n1 1 1!%

3 @1 1 E~n2, n3! 1 E~n2, n3! E~n4, n5! 1 · · · #.

sing Eq. [10], and recalling thatn is large, one can show th

36~n1, n2! 5 exp@ O
k5n2

n121

e$i ġ6~k! 2 ~i /\! E6~k!%#,

nd

E~n1, n2! 5 2@eF* ~n1 2 1!#@eF~n2 1 1!#,

ith

F~m! 5 G2~m!expF i

\ O
k50

m

e$~E1~k! 2 E2~k!!

2\~ġ1~k! 2 ġ2~k!!%G .

o far, we have only considered one particular choic
ntermediate times. We must now sum over allt k (maintaining
he proper time orderings). This yields the following exp
ion for P2(t),

P2~t! 5 expF ig2~t! 2
i

\ E
0

t

dtE2~t!GS~t!, [15]

here

S~t! 5 1 2 E
0

t

d y1F* ~ y1! E
0

y1

dx1F~ x1!

1 E
0

t

d y1F* ~ y1! E
0

y1

dx1F~ x1!

3 E
0

x1

d y2F* ~ y2! E
0

y2

dx2F~ x2! 2 · · · , [16]
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nd

F~t! 5 G2~t!expF i E
0

t

dtd~t!G ;

d~t! 5 FE1~t! 2 E2~t!

\
2 ~ġ1~t! 2 ġ2~t!!G . [17]

e see thatS(t) 5 A(t)exp[ir(t)] contains all the conse
uences of the non-adiabatic time dependence, and t

ncludes transitions between the levels to all orders in
on-adiabatic couplingsG6(t). It is also clear thatr(t) con-

ains all the non-adiabatic corrections to Berry’s phaseg2(t).
e close this section by presenting a procedure for evalu

(t) which promises to be useful in a variety of situations
It is a simple matter to write Eq. [16] as an integral equa

or S(t):

S~t! 5 1 2 E
0

t

d yF* ~ y! E
0

y

dxF~ x!S~ x!. [18]

ntroducing the auxiliary quantityI (t),

I ~t! 5 E
0

t

dxF~ x!S~ x! N S~t! 5
1

F~t!

dI

dt
, [19]

nd differentiating Eq. [18] with respect tot yield an ordinary
ifferential equation forI (t):

d2I

dt2 1 S Ḟ

FD dI

dt
1 uFu 2I 5 0. [20]

rom Eq. [19], the appropriate initial conditions areI (0) 5 0,
nd İ (0) 5 F(0) (note thatS(0) 5 1 according to Eq. [18]
eterminingI (t) reduces to solving Eq. [20], either nume
ally or analytically, which should be possible in a wide var
f circumstances. FromI (t) we determineS(t) via Eq. [19],
nd fromS(t) we determiner(t) andA(t):

tan r~t! 5
Im S~t!

Re S~t!
;

A~t! 5 Î~Re S~t!! 2 1 ~Im S~t!! 2. [21]

(t) also allows us to expressT2(t) more succinctly. Using th
bove results, one can show that
it
e

ng

n

T2~t! 5 2expF ig1~t! 2
i

\ E
0

t

dtE1~t!G I ~t!. [22]

quations [15]–[22] constitute a general approach for d
ining completely the consequences of the non-adiabatic

ion of the environment. Specifically,r(t) contains all non
diabatic corrections to Berry’s phase, whileA(t) describes th
educed amplitude for the 2LS to be found in the nega
nergy level at timet due to transitions. In the followin
ection, we examine a particular example which is experim
ally realizable and yet simple enough that our equations c
valuated without approximation and tested against the
olution of the Schro¨dinger equation.

III. APPLICATION OF GENERAL ANALYSIS
TO A PARTICULAR EXAMPLE

In this section we will examine the interaction of a sp12
ith a time-varying magnetic fieldB(t). The magnetic field i
ssumed to precess about the z-axis at a fixed angleu, at a
onstant precession rateḟ(t) 5 v, and with constant magn
ude uB(t)u 5 B. Such magnetic fields are used regularly
xperiments involving nuclear magnetic resonance (NMR

hat an experimental test of the results of this section shou
ossible. The coupling of a spin to a magnetic field is descr
y the Zeeman Hamiltonian which, for a spin1

2, has the sam
orm as Eq. [3] with the substitutionR(t) 5 2g\B(t)/ 2.
hroughout this section we will stick with the notation of E

3], though it is a simple matter to substitute forR(t) when
ecessary. We will occasionally refer toR(t) as the magnet
eld, though this is not literally true.

. Non-adiabatic Effects: General Analysis

In this subsection, we will determine all non-adiabatic c
ections by evaluatingS(t) using the general analysis of S
ion II. To begin, we must determine the instantaneous e
tatesuE6(t)& of H(t). Straightforward analysis of Eq. (
ives

uE1~t!& 5 S cosu/ 2
sin u/ 2 exp@ivt#D ;

uE2~t!& 5 S sin u/ 2
2cosu/ 2 exp@ivt#D , [23]

hereR(t) 5 R(sin u cosvt, sin u sin vt, cosu). Combining
q. [23] with Eq. [11] gives

H G2~t! 5 2iv/ 2 sin u ; 2iC
d 5 2R/\ 2 v cosu f F~t! 5 2iC exp@idt#.

[24]
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156 FRANK GAITAN
(t) is now inserted into Eq. [20] to give

Ï 2 id İ 1 C2I 5 0.

his equation has constant coefficients and so is easily so
ne finds

I ~t! 5 2
iv sin u

V0
expF idt

2 GsinSV0t

2 D , [25]

ith V 0 5 =d 2 1 4C2. S(t) follows from Eq. [19]:

Re S~t! 5 cos
dt

2
cos

V0t

2
1 cosDu sin

dt

2
sin

V0t

2
[26]

Im S~t! 5 2sin
dt

2
cos

V0t

2
1 cosDu cos

dt

2
sin

V0t

2
. [27]

ere cosDu 5 d/V0: the physical significance ofDu will
ecome clear in the following subsection.

. Non-adiabatic Effects: Rotating Frame Analysis

In this subsection we obtain the exact solution to Sch¨d-
nger’s equation for the particular example considered in
ection, and derive from itS(t). This result will be compare
ith that obtained in Section IIIA, and will thus provide t
rst test of our approach.
The exact solution can be found using a rotating coord

rame analysis. In the laboratory frame, the Schro¨dinger equa
ion is

i\


t
uc~t!& 5 H~t!uc~t!&, [28]

hereH(t) is given by Eq. [3]. We can transform to a fra
hat rotates withR(t) using the unitary operator

8~t! 5 expF2
ivt

2
szG .

riting uc(t)& 5 8(t)uc# (t)&, and substituting into Eq. [28
ive the Schro¨dinger equation in the rotating frame,

i\


t
uc# ~t!& 5 H# uc# ~t!&,

here

H# 5 8 †H8 2 i\8 †8̇

$R cosu 2 \v/ 2% R sin u

5 S R sin u 2$R cosu 2 \v/ 2%D .
d.

is

te

# is clearly time-independent, as expected, since the mag
eld is stationary in the rotating frame. The z-component o
agnetic field has been altered by the transformation.
agnetic field now makes an angleu# with the z-axis given b

tan u# 5
R sin u

R cosu 2 \v/ 2
. [29]

ote thatf# 5 0 sinceH# is real.
Because it is time-independent,H# has stationary states. T

nergies are

E# 6 5 6ÎSR cosu 2
\v

2 D 2

1 R2sin2u 5 6
\V0

2
, [30]

ndV0 was defined in Sec. IIIA. The eigenstates are

uE# 1& 5 Scosu# / 2
sin u# / 2D ; uE# 2& 5 S sin u# / 2

2cosu# / 2D . [31]

he initial condition in the lab frame isuc(0)& 5 uE2(0)&, and
E2(0)& is given in Eq. [23]. SinceU(0) 5 1, the initial
ondition in the rotating frame isuc# (0)& 5 uE2(0)&. Expand-
ng uc# (0)& in the basisuE# 6& gives

uc# ~0!& 5 a1uE# 1& 1 a2uE# 2&, [32]

nd application of the initial condition gives

a1 5 2sin
Du

2
; a2 5 cos

Du

2
. [33]

ereDu [ u# 2 u, and is the sameDu that appeared in Sectio
IIA. One can see this by using Eq. [29] and standard trigo
etric identities to show that cosDu 5 d/V0, just as we foun

or Du in Section IIIA. Physically,Du is the change in the ang
he magnetic field makes with the z-axis, as seen in the rot
nd lab frames. From Eq. [32] we can immediately write

uc# ~t!& 5 a1expF2
iV0t

2 G uE# 1& 1 a2expF iV0t

2 G uE# 2&.

ransforming back to the lab frame gives the exact solu
c(t)&:

uc~t!& 5 expF2
ivt

2 G Ha1expF2
iV0t

2 G
3 S cosu# / 2

sin u# / 2 exp@ivt#D 1 a2expF iV0t

2 G
sin u# / 2
3 S2cosu# / 2 exp@ivt#DJ . [34]
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rom Eq. [34] we can obtain the persistence ampli
2(t) 5 ^E2(t)uc(t)&. Using Eq. [23], we find

P2~t! 5 expF2
ivt

2 GHa1
2 expF2

iV0t

2 G 1 a2
2 expF iV0t

2 GJ .

his expression can be rewritten straightforwardly as

P2~t! 5 expF ig2 2
i

\ E
0

t

dtE2~t!G
3 HexpF2

idt

2 GSa1
2 expF2

iV0t

2 G 1 a2
2 expF iV0t

2 GDJ .

hus, the factor in curly brackets isS(t) (see Eq. [15]), a
etermined from the exact solution of Schro¨dinger’s equation
he exact solution thus yields

Re S~t! 5 cos
dt

2
cos

V0t

2
1 cosDu sin

dt

2
sin

V0t

2
[35]

Im S~t! 5 2sin
dt

2
cos

V0t

2
1 cosDu cos

dt

2
sin

V0t

2
. [36]

omparing Eqs. [35] and [36] with Eqs. [26] and [27], we
hat our approach gives precisely the same result forS(t) as the
xact solution of the Schro¨dinger equation.

. Non-adiabatic Effects: Numerical and Analytical
Evaluation

Here we explicitly evaluate the non-adiabatic correction
erry’s phase. The exact resultr containing all non-adiabat
orrections will be evaluated numerically, while an appr
ate analysis will be used to determine these correc
nalytically in the limit of weak non-adiabaticity. We a
ompare our results with two previous calculations ofr in the
iterature.

We begin our analysis by substituting Eqs. [26] and [27]
q. [21] to determiner. This yields

tan r 5
@ g tan V0t/ 2# 2 tan dt/ 2

1 1 @ g tan V0t/ 2#tan dt/ 2
, [37]

here g [ cos Du 5 d/V0. With « introduced through th
elation

tan
«t

2
5 g tan

V0t

2
, [38]
g

e

e

o

-
ns

o

q. [37] becomes

tan r 5 tanF ~« 2 d!t

2 G ,

o that

r 5
~« 2 d!

2
t. [39]

learly, we must determine«. To this end, we introduce th
efinitions

x 5
\v

2R
; s 5 S v

2pD t; e 5 S \

2RD «; [40]

s well as dimensionless versions ofd and V0 (see Sectio
IIA):

d 5 S \

2RDd 5 1 2 x cosu [41]

e 5 S \

2RDV0 5 Î1 2 2x cosu 1 x2. [42]

inally, from its definition below Eq. [37], we have

g 5
1 2 x cosu

Î1 2 2x cosu 1 x2

5 1 2
x2

2
sin2u 2 x3sin2u cosu 1 2~ x4!. [43]

n terms of these dimensionless quantities, Eq. [38] beco

tanSps

x
eD 5 g tanSps

x
eD . [44]

t is a straightforward matter to numerically invert Eq. [44
btain e, and then, from Eqs. [40] and [39], to determinr
xactly. Before presenting our numerical results, we will

erminee analytically, in the limit of weak non-adiabaticityx
1). This will give an approximate analytical result for

hich can then be compared with previous work in the l
ture, as well as with our numerical result.
The starting point for the approximate treatment is the

ervation thatg 5 1 1 dg. We will determiner to zeroth- and
rst-order indg. The zeroth-order resultr0 will be found to be
dentical with an earlier result of Berry (3), and of Dattaet al.
4). The first-order resultr1 will be found to contain a
scillatory contribution that does not appear inr0. One could
o on to work outr for n $ 2, though we will not do so her
n e.
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e is determined to zeroth-order indg by settingg [ 1 in Eq.
44]. The zeroth-order (indg) approximatione0 thus satisfie

tanSps

x
e0D 5 tanSps

x
eD ,

o that

e0 5 e.

sing e0 in Eqs. [40] and [39] givesr0:

r0 5 SV0 2 d

2 D t. [45]

sing Eq. [42],V0 can be expanded to2( x2), so that for
! 1,

r0 5 vtF x

4
sin2u 1

x2

4
sin2u cosu 1 2~ x3!G . [46]

ur result forr0 is identical to the weakly non-adiabatic resu
f Refs. (3, 4).
To determine corrections toe 0 5 e, we introduceDe

hrough the relation

e ; e 1 De. [47]

quation [44] becomes

tanFps

x
~e 1 De!G 5 ~1 1 dg!tanSps

x
eD .

sing the angle-sum formula for the tangent on the LHS,
quation can be rewritten as

tanSps

x
DeD 5

1

2
sinS2ps

x
eD dg

1 1 dg sin2~~ps/x! e!
.

[48]

p to this point, Eq. [48] is still exact. From Eq. [43], we s
hat whenx ! 1, dg ! 1, so that the first-order (indg) result
e1 satisfies

tanSps

x
De1D 5

1

2
sinS2ps

x
eDdg 1 2~dg2!. [49]

hus whenx ! 1, the RHS of Eq. [49] is small, so that t
angent function on the LHS is well-approximated by its a
ent
is

-

De1 5
x

2ps
sinS2ps

x
eDdg 1 2~dg2!. [50]

sing Eqs. [50], [47], [40], and [39], we find that

r1 5 r0 1 a~ x!sin V0t, [51]

here

a~ x! 5 2
1

2 Fx2

2
sin2u 1 x3sin2u cosuG . [52]

e see thatr1 is qualitatively different fromr0 in that it
ncludes a sinusoidally oscillating contribution not presen

0. For x ! 1, the amplitudea( x) ! 1, although it increase
ith increasingx. Using Eqs. [40] and [42], it follows that

V0t 5 S2p

x D s 1 2~1!, [53]

o that the dimensionless frequency of the sinusoidal os
ion is 2p/x. This frequency is very large whenx ! 1, and
ecreases with increasingx. In the numerical evaluation ofr,
e will sets 5 1 corresponding tot 5 2p/v. In this case, th
scillation has the forma( x)sin(2p/x), so that the number o
scillations swept out in a fixed intervalDx aboutx decrease
s the value ofx is increased. We now comparer0 andr1 with

he exact numerical resultr.
In carrying out the numerical calculation, we have sets 5 1

ndu 5 60°. In Fig. 1a we plotr andr0 for 0 # x # 0.05.
he oscillating curve is the exact resultr which was deter
ined numerically, while the other curve isr0. It is clear that

or this range ofx, we are only seeing the term inr0 that is
inear in x (see Eq. [46]). The oscillations expected inr from
ur approximate analysis are clearly visible. The oscilla
mplitude increases with increasingx, and the rate of oscilla

ion decreases with increasingx, as expected. In Fig. 1b w
lot both r/r0 and r/r1. The rapidly oscillating curve isr/r0.
ne again sees that the oscillation amplitude increases

ncreasingx. It is important to note, however, the scale of
ertical axis in this figure, which has been chosen to f
tilize the graphing space. In spite of appearances, the

ation amplitude is never larger than 0.8% ofr0 for the range
f x-values considered, so that the oscillations really ar
mall amplitude. The decrease in the rate of oscillation
ncreasingx is also clearly apparent. The horizontal line atR 5

in Fig. 1b is r/r1. Clearly, the oscillation inr1 gives an
xcellent account of the oscillations inr for the range o
-values considered in this figure. It is becauser1 agrees s
ell with r that we did not plot it in Fig. 1a: the two curv
verlap so completely that only one curve is seen.
In Fig. 2a we plotr andr over the range 0# x # 0.1. The
0
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161BERRY’S PHASE IN A NON–ADIABATIC ENVIRONMENT
scillatory curve is the exact numerical resultr, while the othe
urve isr0. This figure is qualitatively similar to Fig. 1a, a
ne sees thatr0 is still behaving linearly inx over this range o
-values. In Fig. 2b we plotr/r0 andr/r1. The oscillatory curv

s r/r0, and we again see the increase in oscillation ampli
ith increasingx, though the amplitude is never larger th
.8% ofr0 over the range ofx considered in the figure. The ra
f oscillation continues to decrease with increasingx. The
essentially) horizontal line atR 5 1 is r/r1. We see thatr1

ontinues to provide a very good description ofr, although a
iny residual oscillation is barely apparent.

In Fig. 3a we plotr andr1 for 0 # x # 0.5. We donot plot
0 in this figure since it looks qualitatively similar to Figs.
nd 2a. For this range of x-values, we are more interest
omparingr andr1. We see thatr1 still provides a very goo
pproximation forr, although a small deviation is noticea

or 0.4 # x # 0.5. In Fig. 3b we plotr/r1. The deviation o
from r1 is much more apparent here because of the sca

he vertical axis in the figure. We see, however, thatr1 never
xceedsr by more than 0.8% ofr. One also sees thatr is
eveloping higher frequency oscillations not described br1.
ven so, these differences are not very large over the ran
-values considered, so thatr1 still provides a good analytic
pproximation for the exactr for x # 0.4–0.5.
In the following subsection we show that these non-adia

orrections can be observed using NMR. The oscillationsr
re seen to cause the NMR signal to become frequency
lated, and we present the experimental consequences
odulation.

. Experimental Realization: Nuclear Magnetic Resonan

One of the first observations of Berry’s phase was mad
uteret al. (5) using nuclear magnetic resonance (NMR)

his experiment, the rotating magnetic field precessed abo
-axis in the manner assumed in this section. Measureme
he transverse magnetization^M'(t)& allowed observation o
erry’s phase. We now show that this same measuremen
o surprisingly) will also reveal the non-adiabatic correct
o Berry’s phase determined above. We also show tha
scillations present in these corrections cause^M'(t)& to be-
ome frequency modulated.
If initially the spin 1

2 has a component transverse toB(0), the
pin will begin to precess aboutB(0). If B(t) does not evolv
oo rapidly, the spin precession simply followsB(t). To sim-
lify the analysis, we assume,

uc~0!& 5
1

Î2
@uE1~0!& 1 uE2~0!&#,

orresponding to the spin initially aligned along the x-axi
he lab frame. Usinguc(t)& 5 U(t, 0)uc(0)&, and Eq. [4], we
ave
 s
e

in

of

of

ic

d-
this

y

he
of

ot
s
he

uc~t!& 5
1

Î2
@$P1~t! 1 T2~t!%uE1~t!&

1 $P2~t! 1 T1~t!%uE2~t!&].

The transverse magnetization^M'(t)& 5 ^Mx(t) 1 iM y(t)&
s given by

^M'~t!& 5 Tr rd~t!$g\I 1%. [54]

erer d(t) 5 uc(t)&^c(t)u is the density matrix;I 1 5 I x 1 iI y

s the raising operator for angular momentum; andg is the
yromagnetic ratio. We assume thatt 5 2p/v so thatuE6(2p/
)& 5 uE6(0)&. Also, in the basis uE6(0)&, I 1 5

E1(0)&^E2(0)u. Using these results in Eq. [54] one finds

^M'~2p/v!& 5
g\

2
~P2 1 T1!~P*1 1 T*2!

5
g\

2
@P2P*1 1 T1P*1 1 P2T*2 1 T1T*2#.

[55]

e have already evaluatedP2. T2 can be evaluated using Eq
25] and [22].P1 andT1 are determined by suitably adapt
he analyses forP2 andT2. One finds

P2 5 A expF iRt

\
2

ivt

2
~1 1 cosu ! 1 irG ;

P1 5 A expF2
iRt

\
2

ivt

2
~1 2 cosu ! 2 irG [56]

nd

T2 5 2iC expF2
ivt

2 G ; T1 5 T2. [57]

is determined from Eq. [21], andC from Eq. [24].
Using these results in Eq. [55], one finds

^M'~t 5 2p/v!& 5
g\

2
A2exp@idt 1 2ir~t!# 1

g\

2
C2.

[58]

e will assume below thatx ! 1 so that we can approxima
(t) analytically usingr 1(t) from Section IIIC. In this limit
ne can show thatC2 is of orderx2, and so the second term

he RHS of Eq. [58] is negligible compared to the first. Th
or x ! 1, which we will assume for the remainder of t
ection,
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FIG. 3. (a) Plot of the non-adiabatic corrections to Berry’s phase as a function ofx 5 \v/ 2R. The numerically determined exact resultr and the first-orde
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^Mx~t 5 2pn/v!& 5
g\A2

2
cos@dt 1 2r1~t!#. [59]

sing Eqs. [51] and [45], Eq. [59] can be written as

^Mx~t 5 2pn/v!& 5
g\A2

2
cos@V0t 1 b sin V0t#, [60]

here

b 5 2a~ x!, [61]

nda( x) is given in Eq. [52]. We see that the NMR signal
ecome frequency modulated by the oscillations inr 1(t): the
arrier frequency isV0, and the amplitudeb of the modulating
ignal is small sincex ! 1.
To explicitly display the consequences of this freque
odulation, we rewrite Eq. [60] as

^Mx~t 5 2pn/v!& 5 Re@Acexp~iV0t!exp~ib sin V0t!#,

[62]

hereAc 5 g\A2/ 2. The second exponential factor on
HS of Eq. [62] is periodic with periodTm 5 2p/V 0. Thus,

t can be expanded in a Fourier series,

exp@ib sin V0t# 5 O
n52`

`

cnexp@inV0t#, [63]

ith

cn 5
1

Tm
E

2Tm/ 2

Tm/ 2

dt exp@i ~b sin V0t 2 nV0t!#

5
1

2p E
2p

p

du exp@i ~b sin u 2 nu!# 5 Jn~b!. [64]

n the last step we have used a well-known integral repre
ation for the Bessel functionJn(b) (6). Using Eq. [64] in Eq
62] gives

^Mx~t 5 2pn/v!& 5 O
2`

`

AcJn~b!cos@t~V0 1 nV0!#. [65]

e see that frequency modulation has introduced all the
onics ofV0 into the NMR signal. Sinceb ! 1 whenx ! 1,
e have that (7)
 w
y

n-

r-

Jn~b! <
b n

2nn!
~0 # b ! 1!. [66]

hus, we only need to keepn 5 0, 61 in Eq. [65] so that

^Mx~t 5 2pn/v!& 5
g\A2

2 FcosV0t 2
b

2
~1 2 cos 2V0t!G .

[67]

e see that, whenx ! 1, frequency modulation produces
eak DC-component, and a weak second harmonic ofV0 in

he NMR signal. The carrier frequencyV0 gives the NMR
esonance frequency, which, forx ! 1, is

V0 5
2R

\ F1 2 x cosu

1 Sx2

2
sin2u 1

x3

2
sin2u cosuD 1 2~ x4!G . [68]

he experiment of Suteret al. (5) observed the first two term
n the RHS of Eq. [68]: here the second term is the reson

requency shift produced by Berry’s phase. The third term
q. [68] is the lowest order non-adiabatic correction to

esonance frequency, and is a consequence ofr0. A repetition
f the the Suteret al. experiment would be very interestin
nly this time focusing on whether the observed non-adia
esonance frequency corrections agree with those appear
q. [68]. A search for the harmonics ofV0 in the NMR signa
ould also be very interesting.

IV. CLOSING REMARKS

In this paper we have presented a non-perturbative me
or determining all non-adiabatic corrections to Berry’s ph
he problem of determining these corrections has been red

o solving an ordinary differential equation (ODE) for wh
umerical methods should provide solutions in a variet
ituations.
We applied our method to a particular example which ca

ealized as an NMR experiment, and whose Schro¨dinger equa
ion can be solved exactly. For this example, our method c
lso be implemented exactly, and we saw that it yielded
diabatic corrections which were identical to those obta

rom the exact solution. The exact non-adiabatic correctio
erry’s phase were evaluated numerically, and an analy
pproximation scheme was developed which could be ap

n the limit of weak non-adiabaticity. The non-adiabatic c
ections obtained in the lowest order approximation were i
ical to those found by Berry (3), and by Dattaet al. (4). At the
ext order of approximation, the non-adiabatic correct
ere seen to contain an oscillatory component not prese
nt in
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he lowest order approximation. These oscillations were cle
isible in the exact numerical results, and were show
roduce a frequency modulation of the NMR signal.
on-adiabatic corrections were also seen to cause a shift
MR resonance frequency.
We close with some final comments. (1) We stress the

hat our method is non-perturbative. The object determine
he previously mentioned ODE contains non-adiabatic co
ions to all orders in the non-adiabatic coupling. (2) The ph
e determine is different from the Aharonov–Anandan ph

8). In the scenario that we consider, it is the system Ha
onian which executes a cyclic evolution. Because the
ependence is non-adiabatic, the quantum system doe
eturn to its initial state at the end of a cycle of the Ham
ian, and so its state will not, in general, execute a cy
volution. The phase we have evaluated is, in fact, the
haratnam phase (9–11), and we have explicitly seen that
educes to Berry’s phase in the limit where the non-adiaba
oes to zero. We have also seen, for the example conside
ection III, that no geometric phase appears in the trans
mplitude (see Eq. [57]), in agreement with Berry (12) since
(t) is an odd function oft in this case. (3) It would b

nteresting to apply the method presented here to the case
nvironment undergoing non-adiabatic stochastic motion
iscussed in Ref. (13), the results of such an analysis will
elevant to an ongoing controversy connected with the mo
f vortices in superconductors. The controversy center
hether a certain Berry phase effect is masked by a seco
rocess connected with quasiparticle states bound to the v
ore. Activation of this secondary process requires a s
iently large energy-level broadening of the bound states
ng from finite temperature and/or impurity concentration. R
rence (13) showed that Berry phase effects will produ
nergy-level broadening in the states of a two-level sy
oupled to an environment undergoing adiabatic stoch
otion. Because of the restriction to adiabatic stochastic

ion, the energy-level broadening produced is too sma
ll t1
ly
o
e
the

ct
y

c-
e
e
l-
e
not
-
ic
n-

ty
in
n

an
s

n
n

ary
tex
fi-
is-
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m
tic
o-
o

ctivate the secondary process in the vortex problem. A
ination of the approach of Ref. (13) with that of the presen
aper produces a theoretical framework which can hand
nvironment undergoing non-adiabatic stochastic motion.
ombined approach should allow us to determine whe
erry phase effects and non-adiabaticity can produce suffi
nergy-level broadening to activate the above-mentioned
ndary process. If so, one finds the interesting situatio
hich a Berry phase effect is masked by a secondary pr
hose activation is dependent upon Berry phase effects
ope to report on this application in a future paper.
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