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We consider a two-level system coupled to an environment that the dynamical phase and was already familiar from previor
evolves non-adiabatically. We present a non-perturbative method for  studies of the guantum adiabatic theorem. The first term re

determining the persistence amplitude whose phase contains all the  resents Berry’s discovery, and is referred to as Berry’s phas
corrections to Berry’s phase produced by the non-adiabatic motion of

the environment. Specifically, it includes the effect of transitions

between the two energy levels to all orders in the non-adiabatic |t d
coupling. The problem of determining all non-adiabatic corrections is ye(t) =i d7\ E[R(7)] ar E[R(7)]). (2]
reduced to solving an ordinary differential equation to which numer- 0

ical methods should provide solutions in a variety of situations. We
apply our method to a particular example that can be realized as a  In the cases where Berry’s phase is physically relevaais
magnetic resonance experiment, thus raising the possibility of testing non-integrable: it cannot be written as a single-valued functio
our results in the laboratory. © 1999 Academic Press of R over all of parameter space. Sima?) 6howed that the
guantum adiabatic theorem has a line bundle structure inhere
in it, and that Schidinger’'s equation defines a parallel trans-
I. INTRODUCTION port of the quantum state around the line bundle. Berry’s pha:
is the signature that the associated connection has non-vani
In the original Berry phase scenarit),(the focus of attention ing curvature. In this paper we will consider Berry’s original
is a quantum system with a discrete, non-degenerate energy speenario for a two-level system (2LS), though we will remove
trum. Its HamiltonianH[R] is assumed to depend on a set ofhe adiabatic restriction on the environment. Our goal is t
classical parameteR which represents an environmental degresbtain the corrections to Berry’s phase produced by nor
of freedom to which the quantum system is coupled. The enwidiabatic effects.
ronment is assumed to evolve adiabatically. This produces arThe organization of this paper is as follows. In Section |1, we
adiabatic time dependence in the quantum Hamiltork&rs= introduce a non-perturbative method for determining all non
H[R()]. The time dependence of the quantum stgtft)) is adiabatic corrections to Berry’s phase. From the derivation,
determined by solving Schilinger’s equation using the quantumwill be clear that the effect of transitions between the twc
adiabatic theorem. Toward this end, one introduces the eneggergy levels has been included to all orders in the nor

eigenstates of the instantaneous HamiltorgR(t)], adiabatic coupling. The problem of determining these corre
tions is reduced to solving an ordinary differential equation, t
HIR()]E[R(H)]) = E[R(H)]|E[R(t)]), which numerical methods should provide solutions in a variet

of situations. In Section 11l we work out a particular example

and the quantum system is assumed to be initially prepareoirfngrealt detg'ld' Itn Sgcnon I”ﬁ‘ \;\;\e apply gu[)r?ethod tot'th|s
an eigenstat¢éE[R(0)]) of the initial HamiltonianH[R(0)]. example and determin€ exactly In€ non-adiabatic corrections

The quantum adiabatic theorem states that, at timéhe Berry's phas<_a_. .AS a test qf our method,. in Sectio'n 1B we
quantum system will be found in the S4E{R(t)]) to within solve the Schiinger equation exactly, using a rotating frame
a phase factor transformation, and use this solution to independently obta

the non-adiabatic corrections to Berry’s phase. Comparisc
with the result obtained in Section IlIA shows that both meth
) P! ods yield the same result. In Section IlIC we examine th

(1) = exp ive(t) — ﬁJ’ drE[R(n]|[E[RMD. [1]  ¢orrections to Berry’s phase obtained from our analysis in th

0 limit of weak non-adiabaticity. We carry out this analysis bott

numerically and analytically. In Section IlID, we discuss &

The second term in the phase of the exponential is knownraagnetic resonance experiment that provides a realization
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this particular example, and show how the non-adiabatic cds{k) has the same structure as Eq. [5]:
rections to Berry’s phase can be observed in measurements of

the transverse magnetization. Finally, we make closing re- AP, (k) AT_(k)
marks in Section IV. u(k) = <AT+(k) Ap_(k)) : (7]

1. GENERAL ANALYSIS As the notation implies,AP.(k) = AP.(t..., tJ) and
AT.(K) = AT.(t..4, ty) are, respectively, the persistence anc
Yransition amplitudes corresponding to the time intetyab>

t« 1. Noting that

As mentioned in the Introduction, we consider a 2LS co
pled to an environmental degree of freed&¢t) = R(t) (sin
6 cos ¢, sin 6 sin ¢, cos ) with non-adiabatic time depen-
dence, and for whictR(t) # O for all t. The coupling is e
described by the Hamiltonian, UKk ~1-— = H(k) + O(e?), (8]

H(t) = R(t) - 0. 3 ’
t)=R(t)- o 3] (E-()| = (E(k = D] + e . (Eo(k = 1| + O(e?), [9]

We denote the instantaneous eigenstatesi@j by |E.(t))
with corresponding eigenvalues.(t) = *R(t). Because and using Egs. [5], [8], and [9], one finds that
R(t) # 0, the energy spectrum is non-degenerate throughout

the 2LS’s dynamical evolution. ie

BecauseH(t) has non-adiabatic time dependence, transi- AP.(k) =1+ iey.(k) — 7 E.(k);
tions are possible between the two energy levels. Conse-
quently, if we initially prepare the 2LS in the negative energy AT (k) = —€el'.(k). [10]

level |E_(0)), there is a finite probability amplitud& (t) to

find the 2LS in the positive energy levéE. (1)) at timet. Here a dot over a symbol indicates time differentiation, and
T_(t) is the transition amplitude, and the subscript indicates

that the trar_1_S|t|on be_gan in the negative energy level. S_lm_llarly, i9.(K) = —(E.(K)|E.(K):
the probability amplitude that the system is found again in the .
negative energy level at timedefines the persistence ampli- . (k) = (E=(K)|E-(k)), [11]

tudeP _(t). The subscript again indicates that the system was
initially in the negative energy level. The amplitud@s(t) and  with
T, (t) have analogous definitions.
The 2LS dynamics is determined by the propagaidt, I.(k) = -T*(k).
0) = exp[—(i/k) [ drH(7)]:
v.(k) are the Berry phases for the energy levels, and
U(t, 0)[E~=(0)) = P.(D[E=(1)) + T-(1)[E=(1)). [4] normalizability of the instantaneous energy eigenstates insur
that the Berry phases are redl. (k) are known as the non-
We will determineP _(t) andT_(t) below, though our princi- adiabatic couplings for the: energy levels, and generally are
ple interest is inP_(t). The following derivation is easily complex-valued.
adapted to determin® . (t) and T.(t), though we will not Inserting Eq. [7] repeatedly into Eq. [6], and carrying out the
provide that derivation here. It proves convenient to wd{¢, necessary matrix multiplications, one can show using inductic

0) as a 2X 2 matrix: that
P.(t) T_(t) n-1 n-1
vos 2z DEEOLS (T pw) P =TT AP-(0) +[ [T AP-(WIAT (n)]
[5] k=0 k=n1+1
ni—1

To begin, we divide the time interval (@) into n shorter X[ [T AP.(KI[AT_(ny]
time intervals of duratior = t/n by introducing intermediate k=na+1
timest, = ke (k = 0, - - -, n). Later we will letn — o«. We n2—1
denote the propagator for the time intervigl — t,., by X [T AP_(K)] + - - - . [12]
U(k) = U(t,.4, t) so that k=0

U, 0 =Un-12) ---U(0). [6] We can make this equation more intelligible by introducing the
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amplitudes?® . (i, j) to persistwithout any transitions in a P_(t) =%_(n, 0)[1 + E(ny, ny)
iven energy level over the time intervial — t;:
g & 8 + E(ny, npy) E(ng, ny) + - - -],
i—-1
PG, ) = [T AP.(K). and
k=i
T_(t)=P_(n, 0{P_.(n, n, + DAT_(n)P -“X(n, n, + 1)}
Note thatAP. (i — 1) is the persistence amplitude correspond-
ing to the time intervat;_, — t;. This is why the upper limit
on the product must bie— 1, and noi. Equation [12] can then
be rewritten as Using Eq. [10], and recalling thatis large, one can show that

X [1+ E(n,, ng) + E(ny, ng) E(ny, Ng) + - - - 1.

P.(t)y=%_(n,0 +%_(n,n, + 1)AT,(ny) ni-1
X P (N Ny + DAT_(n)P_(ny, 0) + - - - . P.(ng, ny) = eXp[_E efiy=(k) = (i/h) EL(K)}],

k=n2
[13]
and
Each term in Eq. [13] gives the amplitude for the state of the
2LS to follow a particular time sequence that begins and ends E(ny, n,) = —[eF*(n, — 1)][eF(n, + 1)]

in the negative energy level. For any given time sequence, each
subinterval will have an amplitude associated with it that
indicates whether a transition occurred during4fr(k)), or  With
not (AP(k)). Thus the first term gives the amplitude for the
system to undergo zero transitions; the second term gives the i
amplitude for two transitions to occur (in subintervalsand F(m) = F(m)exp[ﬁ z e{(E.(k) — E_(k))
n,). The remaining terms correspond to 4-transitions, 6-tran- k=0

sitions, etc. Only an even number of transitions is possible

since the time development begins and ends in the negative . .

energy level. Thus each transition out of this level must even- —h(y. (k) = V(k))}]'

tually be followed by a transition back into it. One can set up

a diagrammatic calculus to produce all the terms in Eq. [13],

complete with rules for assigning a probability amplitude t&0 far, we have only considered one particular choice ¢
each diagram, though we will not take the time to work that ointermediate times. We must now sum overtaiimaintaining

m

here. the proper time orderings). This yields the following expres
Similarly, one can show that sion for P _(t),
T t)=?.(n,n,+ DAT_(n)?®_(ny, 0) [
+®.(n, N+ DAT (n)P (ny, n, + 1) P.(t) = exp[iv(t) - ﬁf dTE(T)]S(t), [15]
X AT.(n)® (N, Ny + 1) ’
X AT_(ng)® _(ng, 0) + - - - . [14] where

Here only an odd number of transitions can occur since the 2LS . ,
must finish in the positive energy level after having started in _ !

) R I t)y=1- dy,F* dx,F(x
the negative energy level. Further simplification is possible if SO Vi (y) FOu)

. 0
we introduce

0
t Y1
E(ny, ny) = AT, (n)P . (ny, N, + 1) + j dy;F*(y,) f dx;F(x,)
X P ~Yny, n, + DAT (n,), 0 0

X1 y2
and insert 1= @ _(k)% -*(k) appropriately into Egs. [13] and X j dyF*(ys) J dXF(Xp) — -+, [16]
[14]. One finds that 0 0
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and

F(t) = F(t)ex{i ft dTS(T)];

E. (1) —E_(7)

am{ :

= (y4(7) = '7(7))] - 17

We see thatS(t) = A(t)explip(t)] contains all the conse-

quences of the non-adiabatic time dependence, and thal |
includes transitions between the levels to all orders in tlji%

non-adiabatic couplingF . (t). It is also clear thap(t) con-
tains all the non-adiabatic corrections to Berry’s phasét).
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T (1) = —ex;{m(t) —;Jt dTE+(T)]|(t). [22]

Equations [15]-[22] constitute a general approach for dete
mining completely the consequences of the non-adiabatic m
tion of the environment. Specificallyy(t) contains all non-
adiabatic corrections to Berry’'s phase, whil@) describes the
reduced amplitude for the 2LS to be found in the negativ
energy level at timet due to transitions. In the following
ection, we examine a particular example which is experimel

ry realizable and yet simple enough that our equations can |
evaluated without approximation and tested against the exe
solution of the Schidinger equation.

We close this section by presenting a procedure for evaluating

S(t) which promises to be useful in a variety of situations.

It is a simple matter to write Eq. [16] as an integral equation

for S(t):

y

dXF(x)S(x). [18]

&Uzl—j

Introducing the auxiliary quantit(t),

dyF*(y)f

0

t 1 di
|(t)=f dXF(X)S(X)@S(t)Zma, [19]

and differentiating Eq. [18] with respect toyield an ordinary
differential equation fot (t):

(&)

From Eg. [19], the appropriate initial conditions a(@) = 0,
and1(0) = F(0) (note thatS(0) = 1 according to Eq. [18]).

d?l
dt?

dl

s 2]
g Il =o. [20]

Determiningl (t) reduces to solving Eq. [20], either numeri-
cally or analytically, which should be possible in a wide variety

of circumstances. Fro(t) we determineS(t) via Eq. [19],
and fromS(t) we determinep(t) and A(t):

Im S(t
tanp(t) = r:;:((t;;
A(t) = J(ReS(1))2 + (Im S(t))2 [21]

[(t) also allows us to expreds (t) more succinctly. Using the
above results, one can show that

I11. APPLICATION OF GENERAL ANALYSIS
TO A PARTICULAR EXAMPLE

In this section we will examine the interaction of a spgin
with a time-varying magnetic fiel@(t). The magnetic field is
assumed to precess about the z-axis at a fixed afght a
constant precession rafgt) = o, and with constant magni-
tude |B(t)] = B. Such magnetic fields are used regularly in
experiments involving nuclear magnetic resonance (NMR), s
that an experimental test of the results of this section should |
possible. The coupling of a spin to a magnetic field is describe
by the Zeeman Hamiltonian which, for a sgirhas the same
form as Eq. [3] with the substitutioR(t) = —yAB(t)/2.
Throughout this section we will stick with the notation of Eqg.
[3], though it is a simple matter to substitute fR(t) when
necessary. We will occasionally refer R(t) as the magnetic
field, though this is not literally true.

A. Non-adiabatic Effects: General Analysis

In this subsection, we will determine all non-adiabatic cor
rections by evaluatin@(t) using the general analysis of Sec-
tion Il. To begin, we must determine the instantaneous eigel
states|E.(t)) of H(t). Straightforward analysis of Eq. (3)
gives

cosh/2
|E. (1) = <sin 012 exp[iwt]) ;
sin 6/2
[E-() = (—0030/2 exr{iwt]) ' (23]

whereR(t) = R(sin 6 coswt, sin 6 sin wt, cosd). Combining
Eq. [23] with Eqg. [11] gives

' (t) = —iw/2 sing = —iC

8=2R/Ah — w cosf = F(t) = —iC exdist].

(24]



156 FRANK GAITAN

F(t) is now inserted into Eq. [20] to give H is clearly time-independent, as expected, since the magne
field is stationary in the rotating frame. The z-component of th
i —isl +C? =0. magnetic field has been altered by the transformation. Tt

magnetic field now makes an anglavith the z-axis given by

This equation has constant coefficients and so is easily solved. R sin 6

One finds 9= -
tan o RcosO — hiwl/2° [29]

iw Sin 6 i6t] [ Qt - . _
1(t) = -—q ex > sin > ) [25] Note that¢ = 0 sinceH is real.
0 Because it is time-independeit, has stationary states. The

energies are
with Q, = V8% + 4C*. g(t) follows from Eq. [19]: 9

fiw\? hQ
8t Qg 8t Ot E.= t\/(RCOSG - ) + R%in20 = + ——,  [30]
Re S(t) = cos— cos—— + COSAf sin—+ sin—— [26] 2 2
2 2 2 2
.ot Qot ot Qo and (), was defined in Sec. IllIA. The eigenstates are
Im S(t) = —sin = cos—— + cosAf cos—+ sin——. [27]
2 2 2 2 ~ ~
_ cos0/2 _ sin 6/2
s cal sionit . Eo=(Smaa) B =( Soens) - 131
Here cosA6 = &/}, the physical significance o6 will sin cos

become clear in the following subsection.
The initial condition in the lab frame ig/(0)) = |E_(0)), and
B. Non-adiabatic Effects: Rotating Frame Analysis |[E_(0)) is given in Eg. [23]. SinceU(0) = 1, the initial

In this subsection we obtain the exact solution to Sdhro.cond-ition .in the rotgtin_g fra’.“e isp(0)) = [E-(0)). Expand-
ng |(0)) in the basidE.) gives

inger's equation for the particular example considered in tH
section, and derive from &(t). This result will be compared _ _ _
with that obtained in Section llIA, and will thus provide the [¥(0)) = a.|E;) + a[E), [32]
first test of our approach.

The exact solution can be found using a rotating coordina8d application of the initial condition gives
frame analysis. In the laboratory frame, the Sclimger equa-

tion is A6 B Ao
a, = —sin—5-; a =cos . [33]
0
i ot (1)) = HO[y(1), (28]  HereAg=18— 0, and is the samA®6 that appeared in Section

[IIA. One can see this by using Eq. [29] and standard trigonc

whereH(t) is given by Eg. [3]. We can transform to a framénetric.identiti.es to show th_at casd = 8/Q),, just as we found
that rotates witrR(t) using the unitary operator for A6 in Section IIIA. PhysicallyA# is the change in the angle
the magnetic field makes with the z-axis, as seen in the rotatil
i wt
Ou(t) = EX% —7 O'Z:| .

and lab frames. From Eq. [32] we can immediately write
_ iQet]  _ iQet] -
~ lh(t)) = a,exp — 3 |[E,) + a_ex 5 |E_).
Writing [¢(t)) = A(t)|d(t)), and substituting into Eq. [28]
give the Schidinger equation in the rotating frame,

Transforming back to the lab frame gives the exact solutio

|(t)):

hm»=w%—ﬁ1{mw%—%ﬂ

» cos6/2 N 1 Qot
A = o THU — %ot sin 6/2 exdiwt] a-exp
_ ({Rcos6 — ol 2} Rsing y sin 6/2
- Rsin 6 —{Rcosh — hwl/2}) —cos6/2 exdiot]) | -

ifi o |(t)) = H|y(t)),

where

(34]
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From Eq. [34] we can obtain the persistence amplitudeg. [37] becomes
P_(t) = (E_(t)|y(t)). Using Eq. [23], we find

. _y (e — &)t
. iot]( i0t] |, [i0f anp=1tan =5
_(t) = ex -5 |javem -5 + a‘ex 5 .
so that
This expression can be rewritten straightforwardly as ( 5)
e —
t ) P=""> t. [39]
P_(t)=exp iy.—+ | drE_(7) ) ) ]
h 0 Clearly, we must determine. To this end, we introduce the
: definitions

x[exp[ ist](azexp[ mot-+a2exp[i00t])]
T2 (| T 2 - 2 ' Cho o fw)  [h)
| X_ﬁ’ S = (27T) t, e= <2R) £, [40]

Thus, the factor in curly brackets §(t) (see Eq. [15]), as as well as dimensionless versions &fand (), (see Section
determined from the exact solution of StHiger’'s equation. |11A):
The exact solution thus yields

h
st Qut st O d= <2R)8 =1 - xcos6 [41]
Re S(t) = cos—= cos—— + cosA0 sin = sin—— [35]
2 2 2 2 %
e=|-2/Qy= 1 - 2xcos6 + x% 42
S8t Qg st Qi <2R> o [42]
Im S(t) = —sin— cos—- + cosA6 cos sin-—-. [36]

Finally, from its definition below Eq. [37], we have
Comparing Egs. [35] and [36] with Egs. [26] and [27], we see

that our approach gives precisely the same resulsftras the 9= 1-—xcosé
exact solution of the Schdinger equation. \/1 — 2x cosf + x?
X2
C. Non-adiabatic Effects: Numerical and Analytical =1-> sin?f — x%sin?0 cos@ + O(x*).  [43]

Evaluation

Here we explicitly evaluate the non-adiabatic corrections to terms of these dimensionless quantities, Eq. [38] become
Berry’s phase. The exact respltcontaining all non-adiabatic
corrections will be evaluated numerically, while an approxi- TS TS
mate analysis will be used to determine these corrections tar( f) =9 tar(e) :
analytically in the limit of weak non-adiabaticity. We also

compare our results with two previous calculationpof the ¢ j5 5 siraightforward matter to numerically invert Eq. [44] to
literature. _ o _ obtaine, and then, from Egs. [40] and [39], to determipe

We begin our analysis by substituting Eqs. [26] and [27]int@y a1y Before presenting our numerical results, we will de
Eq. [21] to determing. This yields terminee analytically, in the limit of weak non-adiabaticity

< 1). This will give an approximate analytical result fpr
[gtanQt/2] — tan 6t/2 which can then be compared with previous work in the liter
1+ [gtanQt/2]tan 6t/ 2 [37] ature, as well as with our numerical result.

The starting point for the approximate treatment is the ok
servation thay = 1 + 8g. We will determinep to zeroth- and
first-order indg. The zeroth-order resufi, will be found to be
identical with an earlier result of Berrng), and of Datteet al.
(4). The first-order resultp, will be found to contain an
tang—t — g tan% [38] oscillatory contribution that does not appearpiy One could
' go on to work oup, for n = 2, though we will not do so here.

[44]

tanp =

whereg = cos Af = 8/Q,. With ¢ introduced through the
relation

2
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e is determined to zeroth-order &g by settingg = 1 in Eq. X  (2ms )
[44]. The zeroth-order (ibg) approximatione, thus satisfies Aer =5 5'”<X e)dg + 0(5g7). [50]
tar( 7773 eo) _ tar( 7773 e) ’ Using Egs. [50], [47], [40], and [39], we find that

p1= po + a(x)sin Qt, [51]

so that

where
€y = e.
1 X2 in2 3cin?
Using €, in Egs. [40] and [39] givep,: a(x) = —5 | 5 sin“6 + x’sin°9 cos 6 | . [52]
oo = (Qo - 5) ( [a5] We see thatp, is qualitatively different fromp, in that it
0 2 ' includes a sinusoidally oscillating contribution not present it

po- Forx < 1, the amplitudea(x) < 1, although it increases
Using Eq. [42],Q, can be expanded t6(x?), so that for with increasingx. Using Egs. [40] and [42], it follows that
X <1,

2

2
po = wt| — sin®0 + — sin®9 cos + O(x%) | . [46]

4 4

so that the dimensionless frequency of the sinusoidal oscill
Our result forp, is identical to the weakly non-adiabatic resultgion is 2z/x. This frequency is very large when< 1, and

of Refs. 8, 4). decreases with increasing In the numerical evaluation gf,
To determine corrections te, = e, we introduceAe we will sets = 1 corresponding to = 27/ w. In this case, the
through the relation oscillation has the forna(x)sin(2w/x), so that the number of
oscillations swept out in a fixed intervAlx aboutx decreases
e=e+ Ae. [47] as the value ok is increased. We now compaggandp, with
the exact numerical resyft
Equation [44] becomes In carrying out the numerical calculation, we haveset 1

and# = 60°. In Fig. 1a we plop andp, for 0 = x =< 0.05.

S s The oscillating curve is the exact respltwhich was deter-

tan[x (e + Ae)] =(1+ Sg)tar<x e) . mined numerically, while the other curvegs. It is clear that,

for this range ofx, we are only seeing the term j® that is

Using the angle-sum formula for the tangent on the LHS, thlfgear nx (gee Eq. [46])'. The OSC|IIat|on§ .expectedprﬁro'm .

. . our approximate analysis are clearly visible. The oscillatiol
equation can be rewritten as . . o ) :

amplitude increases with increasirgand the rate of oscilla-

tion decreases with increasing as expected. In Fig. 1b we

ta,.(ws Ae) — } Sin(Z’ﬂ'S e) .829 _ plot bOthp/po and p/p,. The rapidly oscillat!ng curve i9/po. |
X 2 X 1 + 89 sin*((ms/x) e) One again sees that the oscillation amplitude increases wi
[48] increasingx. It is important to note, however, the scale of the

vertical axis in this figure, which has been chosen to fully
utilize the graphing space. In spite of appearances, the osc
Fation amplitude is never larger than 0.8% mffor the range
of x-values considered, so that the oscillations really are c
small amplitude. The decrease in the rate of oscillation wit
increasing is also clearly apparent. The horizontal lind=at
ta 7TSA€1> _ 1sin(zwse> 59 + 0(5g?).  [49] 1 in Fig. 1b ispl/p,. Clearly, t.he .oscilllation inp; gives an
X 2 X excellent account of the oscillations im for the range of
x-values considered in this figure. It is becayseagrees so
Thus whenx < 1, the RHS of Eqg. [49] is small, so that thewell with p that we did not plot it in Fig. la: the two curves
tangent function on the LHS is well-approximated by its argwverlap so completely that only one curve is seen.
ment In Fig. 2a we plofp andp, over the range &= x = 0.1. The

Up to this point, Eq. [48] is still exact. From Eq. [43], we se
that whenx < 1, 6g < 1, so that the first-order (ifg) result
Ae, satisfies
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(a) Plot of the non-adiabatic corrections to Berry’s phases a function ok = fiw/2R. The oscillating curve is the numerically determined exact resul
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oscillatory curve is the exact numerical resyltvhile the other 1

curve isp,. This figure is qualitatively similar to Fig. 1a, and (1)) = 5 [{P.(t) + T_(D}E.(1))
one sees that, is still behaving linearly i over this range of v

x-values. In Fig. 2b we plqi/p, andp/p,. The oscillatory curve +{P_(t) + T.(D}E_(D)].

is p/p,, and we again see the increase in oscillation amplitude

with increasingx, though the amplitude is never larger than The transverse magnetizatioM , (t)) = (M,(t) + iM(t))
1.8% ofp, over the range of considered in the figure. The rateis given by

of oscillation continues to decrease with increasiigThe

(essentially) horizontal line & = 1 is p/p,. We see thap, (M, (1)) = Tr py(t){y#il *}. [54]
continues to provide a very good descriptionpofalthough a
tiny residual oscillation is barely apparent. Herepa(t) = [(t))(y(t)| is the density matrixt* = 1, + il

In Fig. 3a we plop andp, for 0 = x = 0.5. We donotplot s the raising operator for angular momentum; ands the

po in this figure since it looks qualitatively similar to Figs. 1agyromagnetic ratio. We assume that 27/ so thaiE. (2m/
and 2a. For this range of x-values, we are more interestedu;% — |E.(0). Also, in the basis |E.(0)) —

comparingp andp,. We see thap, still provides a very good |E.(0)){E_(0)|. Using these results in Eq. [54] one finds
approximation forp, although a small deviation is noticeable

for 0.4 = x = 0.5. InFig. 3b we plotp/p,. The deviation of 5
p from p, is much more apparent here because of the scale of M | (27/w)) = Rid (P_+ T)(P* +T%)

the vertical axis in the figure. We see, however, thahever 2

exceedsp by more than 0.8% op. One also sees that is vh

developing higher frequency oscillations not describeg by =5 [PPL+T,PL+P.TE+ T, TN
Even so, these differences are not very large over the range of

x-values considered, so thay still provides a good analytical [55]

approximation for the exag for x = 0.4-0.5.

In the following subsection we show that these non-adiaba{jge have already evaluat&d . T_ can be evaluated using Egs.

corrections can be observed using NMR. The oscillations inj25] and [22].P. andT. are determined by suitably adapting
are seen to cause the NMR signal to become frequency megk analyses foP_ and T_. One finds
ulated, and we present the experimental consequences of this
modulation. iRt it
P_=Aex 7—7(1+c056) +ip] ;
D. Experimental Realization: Nuclear Magnetic Resonance

One of the first observations of Berry’s phase was made by P,=A exp[ — I:—t — % (1—-rcosf) — ip] [56]
Suteret al. (5) using nuclear magnetic resonance (NMR). In
this experiment, the rotating magnetic field precessed about the
z-axis in the manner assumed in this section. Measuremenif’jlgld
the transverse magnetizatigM , (t)) allowed observation of )
Berry's phase. We now show that this same measurement (not T = —ic exp[ _ '“’t} T =T [57]
so surprisingly) will also reveal the non-adiabatic corrections - 21 7 -
to Berry’s phase determined above. We also show that the
oscillations present in these corrections ca{ide (t)) to be- A is determined from Eq. [21], an@ from Eqg. [24].
come frequency modulated. Using these results in Eqg. [55], one finds
If initially the spin3 has a component transverse3(), the
spin will begin to precess abo®(0). If B(t) does not evolve vh vh
too rapidly, the spin precession simply followt). To sim- M (t=27/w)) =5 A?exdist + 2ip(t)] + > C?
plify the analysis, we assume,

[58]
1 . .
[¥(0)) = 5 [|E.(0)) + [E_(0))], We will assume below that < 1 so that we can approximate
v p(t) analytically usingp,(t) from Section IlIC. In this limit,

one can show that” is of orderx?®, and so the second term on
corresponding to the spin initially aligned along the x-axis ithe RHS of Eq. [58] is negligible compared to the first. Thus
the lab frame. Usings(t)) = U(t, 0)|¢(0)), and Eq. [4], we for x < 1, which we will assume for the remainder of this
have section,
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2

yhA
(My(t = 27/ w)) =

5 cog 8t + 2p,(1)].  [59]
Using Egs. [51] and [45], Eq. [59] can be written as
2
(M(t = 27/ w)) = o cog Ot + B sinQt], [60]
where
B = 2a(x), [61]

anda(x) is given in Eq. [52]. We see that the NMR signal ha;
become frequency modulated by the oscillationgi(t): the
carrier frequency i€),, and the amplitudg of the modulating
signal is small sincex < 1.

To explicitly display the consequences of this frequency

modulation, we rewrite Eq. [60] as

(M,(t = 27N/ w)) = R AexpliQot)exp(iB sin Qqt)],
[62]

where A,
RHS of Eq. [62] is periodic with period,, = 27/Q,. Thus,
it can be expanded in a Fourier series,

exdiB sinQgt] = > c.exdinQqt],

n=-—o

(63]

with

T/ 2

dt exdi(B sin Qqt — nQt)]

v.)

fﬁ duexdi(B sinu—nu)] =J,(B). [64]

-

—Tm/2

2
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LB =~

ai (0=B8<1).

(66]

Thus, we only need to keap = 0, =1 in Eq. [65] so that

2

YhA B
(My(t = 2mn/w)) = cosQ,t — 5 (1 —cos 0),t) | .

2
[67]

We see that, wher < 1, frequency modulation produces a
weak DC-component, and a weak second harmonif ofn
the NMR signal. The carrier frequendy, gives the NMR
Pesonance frequency, which, far< 1, is

2R

=7 [l—XCOS@

X2 L, X3 -
+ | 5 sin“0 + - sin“6 cosh

5 5 ) + @(x“)} . [68]

The experiment of Suteat al. (5) observed the first two terms
on the RHS of Eq. [68]: here the second term is the resonan

vhA?2. The second exponential factor on thdrequency shift produced by Berry’s phase. The third term i

Eq. [68] is the lowest order non-adiabatic correction to th
resonance frequency, and is a consequengg. gk repetition

of the the Suteet al. experiment would be very interesting,
only this time focusing on whether the observed non-adiabat
resonance frequency corrections agree with those appearing
Eq. [68]. A search for the harmonics 6f, in the NMR signal
would also be very interesting.

IV. CLOSING REMARKS

In this paper we have presented a non-perturbative meth
for determining all non-adiabatic corrections to Berry’s phase
The problem of determining these corrections has been reduc
to solving an ordinary differential equation (ODE) for which
numerical methods should provide solutions in a variety c
situations.

We applied our method to a particular example which can b
realized as an NMR experiment, and whose Sdimger equa-

In the last step we have used a well-known integral represgy, can be solved exactly. For this example, our method cou

tation for the Bessel functiod,(B) (6). Using Eq. [64] in Eq. also be implemented exactly

[62] gives

(My(t = 27/ w)) = 2 AJ,(B)cogt(Qy + nQy)]. [65]

—

We see that frequency modulation has introduced all the h
monics of(), into the NMR signal. Sincg < 1 whenx < 1,
we have that?)

and we saw that it yielded nol
adiabatic corrections which were identical to those obtaine
from the exact solution. The exact non-adiabatic corrections
Berry's phase were evaluated numerically, and an analytic
approximation scheme was developed which could be applit
in the limit of weak non-adiabaticity. The non-adiabatic cor-
rections obtained in the lowest order approximation were idet
tical to those found by Berny3jj, and by Dattaet al. (4). At the

next order of approximation, the non-adiabatic correction
were seen to contain an oscillatory component not present
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the lowest order approximation. These oscillations were cleadgtivate the secondary process in the vortex problem. A cor
visible in the exact numerical results, and were shown tonation of the approach of Refld) with that of the present
produce a frequency modulation of the NMR signal. Theaper produces a theoretical framework which can handle
non-adiabatic corrections were also seen to cause a shift in émyironment undergoing non-adiabatic stochastic motion. Th
NMR resonance frequency. combined approach should allow us to determine whethe
We close with some final comments. (1) We stress the faerry phase effects and non-adiabaticity can produce sufficie
that our method is non-perturbative. The object determined byergy-level broadening to activate the above-mentioned se
the previously mentioned ODE contains non-adiabatic corremadary process. If so, one finds the interesting situation i
tions to all orders in the non-adiabatic coupling. (2) The phaséich a Berry phase effect is masked by a secondary proce
we determine is different from the Aharonov—Anandan phaséhose activation is dependent upon Berry phase effects! W
(8). In the scenario that we consider, it is the system Hamiope to report on this application in a future paper.
tonian which executes a cyclic evolution. Because the time
dependence is non-adiabatic, the quantum system does not ACKNOWLEDGMENTS
return to its initial state at the end of a cycle of the Hamilto-
nian, and so its state will not, in general, execute a cycliclt is a pleasure to thank Alan Bishop and the T-11 group at Los Alamo
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é(t) is an odd function oft in this case. (3) It would be .
. . 2. B. Simon, Phys. Rev. Lett. 51, 2167 (1983).
mterestmg to apply th? method preseqted here to' the case of M. v. Berry, Proc. R. Soc. Lond. Ser. A 414, 31 (1987).
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discussed in Ref.1Q), the results of such an analysis will be 1989).
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